beanmachine.ppl.compiler.bmg_nodes module
- class beanmachine.ppl.compiler.bmg_nodes.AdditionNode(inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNodeThis represents an addition of values.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.BMGNode(inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
abc.ABCThe base class for all graph nodes.
- property is_leaf: bool
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.BernoulliBase(probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- class beanmachine.ppl.compiler.bmg_nodes.BernoulliLogitNode(probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BernoulliBaseThe Bernoulli distribution is a coin flip; it takes a probability and each sample is either 0.0 or 1.0.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.BernoulliNode(probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BernoulliBaseThe Bernoulli distribution is a coin flip; it takes a probability and each sample is either 0.0 or 1.0.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.BetaNode(alpha: beanmachine.ppl.compiler.bmg_nodes.BMGNode, beta: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe beta distribution samples are values between 0.0 and 1.0, and so is useful for creating probabilities.
- property alpha: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- property beta: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNodeThis is the base class for all binary operators.
- property left: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property right: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- class beanmachine.ppl.compiler.bmg_nodes.BinomialLogitNode(count: beanmachine.ppl.compiler.bmg_nodes.BMGNode, probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinomialNodeBaseThe Binomial distribution is the extension of the Bernoulli distribution to multiple flips. The input is the count of flips and the probability of each coming up heads; each sample is the number of heads after “count” flips.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.BinomialNode(count: beanmachine.ppl.compiler.bmg_nodes.BMGNode, probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode, is_logits: bool = False)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinomialNodeBaseThe Binomial distribution is the extension of the Bernoulli distribution to multiple flips. The input is the count of flips and the probability of each coming up heads; each sample is the number of heads after “count” flips.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.BinomialNodeBase(count: beanmachine.ppl.compiler.bmg_nodes.BMGNode, probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNode- property count: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- support() Iterable[Any]
- class beanmachine.ppl.compiler.bmg_nodes.BitAndNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.BitOrNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.BitXorNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.BooleanNode(value: bool)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantNodeA Boolean constant
- value: bool
- class beanmachine.ppl.compiler.bmg_nodes.BroadcastNode(value: beanmachine.ppl.compiler.bmg_nodes.BMGNode, rows: beanmachine.ppl.compiler.bmg_nodes.NaturalNode, columns: beanmachine.ppl.compiler.bmg_nodes.NaturalNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.CategoricalLogitNode(probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.CategoricalNodeBase- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.CategoricalNode(probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.CategoricalNodeBase- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.CategoricalNodeBase(probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe categorical distribution is the extension of the Bernoulli distribution to multiple outcomes; rather than flipping an unfair coin, this is rolling an unfair n-sided die.
The input is the probability of each of n possible outcomes, and each sample is drawn from 0, 1, 2, … n-1.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property probability: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- class beanmachine.ppl.compiler.bmg_nodes.Chi2Node(df: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe chi2 distribution is a distribution of positive real numbers; it is a special case of the gamma distribution.
- property df: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ChoiceNode(condition: beanmachine.ppl.compiler.bmg_nodes.BMGNode, items: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNodeThis class represents a stochastic choice between n options, where the condition is a natural.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.CholeskyNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents an Cholesky operation; it is generated when a model contains calls to Tensor.cholesky.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ColumnIndexNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ComparisonNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNodeThis is the base class for all comparison operators.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ComplementNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a complement of a Boolean or probability value.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ConstantBooleanMatrixNode(value: torch.Tensor)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantTensorNode- value: torch.Tensor
- class beanmachine.ppl.compiler.bmg_nodes.ConstantNaturalMatrixNode(value: torch.Tensor)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantTensorNode- value: torch.Tensor
- class beanmachine.ppl.compiler.bmg_nodes.ConstantNegativeRealMatrixNode(value: torch.Tensor)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantTensorNode- value: torch.Tensor
- class beanmachine.ppl.compiler.bmg_nodes.ConstantNode
Bases:
beanmachine.ppl.compiler.bmg_nodes.BMGNodeThis is the base type for all nodes representing constants. Note that every constant node has an associated type in the BMG type system; nodes that represent the “real” 1.0, the “positive real” 1.0, the “probability” 1.0 and the “natural” 1 are all different nodes and are NOT deduplicated.
- value: Any
- class beanmachine.ppl.compiler.bmg_nodes.ConstantPositiveRealMatrixNode(value: torch.Tensor)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantTensorNode- value: torch.Tensor
- class beanmachine.ppl.compiler.bmg_nodes.ConstantProbabilityMatrixNode(value: torch.Tensor)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantTensorNode- value: torch.Tensor
- class beanmachine.ppl.compiler.bmg_nodes.ConstantRealMatrixNode(value: torch.Tensor)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantTensorNode- value: torch.Tensor
- class beanmachine.ppl.compiler.bmg_nodes.ConstantSimplexMatrixNode(value: torch.Tensor)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantTensorNode- value: torch.Tensor
- class beanmachine.ppl.compiler.bmg_nodes.ConstantTensorNode(value: torch.Tensor)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantNodeA tensor constant
- value: torch.Tensor
- class beanmachine.ppl.compiler.bmg_nodes.DirichletNode(concentration: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe Dirichlet distribution generates simplexs – vectors whose members are probabilities that add to 1.0, and so it is useful for generating inputs to the categorical distribution.
- property concentration: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.DistributionNode(inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
beanmachine.ppl.compiler.bmg_nodes.BMGNodeThis is the base class for all nodes that represent probability distributions.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.DivisionNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNodeThis represents a division.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ElementwiseMultiplyNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.EqualNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ComparisonNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.Exp2Node(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ExpM1Node(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents the operation exp(x) - 1; it is generated when a model contains calls to Tensor.expm1.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ExpNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents an exponentiation operation; it is generated when a model contains calls to Tensor.exp or math.exp.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ExpProductFactorNode(inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
beanmachine.ppl.compiler.bmg_nodes.FactorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.FactorNode(inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
beanmachine.ppl.compiler.bmg_nodes.BMGNodeThis is the base class for all factors. The inputs are the operands of each factor.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.FillMatrixNode(value: beanmachine.ppl.compiler.bmg_nodes.BMGNode, rows: beanmachine.ppl.compiler.bmg_nodes.NaturalNode, columns: beanmachine.ppl.compiler.bmg_nodes.NaturalNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.FlatNode
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe Flat distribution the standard uniform distribution from 0.0 to 1.0.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.FloorDivNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.GammaNode(concentration: beanmachine.ppl.compiler.bmg_nodes.BMGNode, rate: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe gamma distribution is a distribution of positive real numbers characterized by positive real concentration and rate parameters.
- property concentration: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property rate: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- class beanmachine.ppl.compiler.bmg_nodes.GreaterThanEqualNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ComparisonNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.GreaterThanNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ComparisonNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.HalfCauchyNode(scale: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe Cauchy distribution is a bell curve with zero mean and a heavier tail than the normal distribution; it is useful for generating samples that are not as clustered around the mean as a normal.
The half Cauchy distribution is just the distribution you get when you take the absolute value of the samples from a Cauchy distribution. The input is a positive scale factor and a sample is a positive real number.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property scale: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- class beanmachine.ppl.compiler.bmg_nodes.HalfNormalNode(sigma: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe half-normal distribution is a half bell curve with a given standard deviation. Mean (for the underlying normal) is taken to be zero.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property sigma: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- class beanmachine.ppl.compiler.bmg_nodes.IfThenElseNode(condition: beanmachine.ppl.compiler.bmg_nodes.BMGNode, consequence: beanmachine.ppl.compiler.bmg_nodes.BMGNode, alternative: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNodeThis class represents a stochastic choice between two options, where the condition is a Boolean.
- property alternative: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- property condition: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- property consequence: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.InNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ComparisonNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.IndexNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.InputList(node: beanmachine.ppl.compiler.bmg_nodes.BMGNode, inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
object- inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode]
- class beanmachine.ppl.compiler.bmg_nodes.InvertNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a bit inversion (~).
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.IsNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ComparisonNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.IsNotNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ComparisonNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ItemNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNodeRepresents torch.Tensor.item() conversion from tensor to scalar.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LKJCholeskyNode(dim: beanmachine.ppl.compiler.bmg_nodes.BMGNode, eta: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe LKJ distribution produces correlation matrices of size dim x dim according to a concentration parameter eta. This is the Cholesky factorization of that distribution, so that L L^T ~ LKJ(eta) for L ~ LKJCholesky(eta).
- property dim: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- property eta: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LShiftNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LessThanEqualNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ComparisonNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LessThanNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ComparisonNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.Log10Node(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.Log1mexpNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a log1mexp operation; it is generated as an optimization when a graph contains x -> exp -> complement -> log
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.Log1pNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.Log2Node(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LogAddExpNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNodeThis class represents the LogAddExp operation: for values v_1, v_2 we compute log(exp(v_1) + exp(v_2))
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LogNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a log operation; it is generated when a model contains calls to Tensor.log or math.log.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LogProbNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNodeThis class represents the log_prob operator on a distribution
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LogSumExpNode(inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNodeThis class represents the LogSumExp operation: for values v_1, …, v_n we compute log(exp(v_1) + … + exp(v_n))
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LogSumExpTorchNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode, dim: beanmachine.ppl.compiler.bmg_nodes.BMGNode, keepdim: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LogSumExpVectorNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.LogisticNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents the operation 1/(1+exp(x)); it is generated when a model contains calls to Tensor.sigmoid.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MatrixAddNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MatrixComplementNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a complement operation; it is generated when a model contains calls like (1-p) or ~b where p is a probability and b is a boolean
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MatrixExpNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents an exponentiation operation; it is generated when a model contains calls to Tensor.exp or math.exp.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MatrixLog1mexpNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a log1mexp operation; it is generated when a model contains calls to math.log1mexp or x -> exp -> complement -> log
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MatrixLogNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a log operation; it is generated when a model contains calls to Tensor.log or math.log.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MatrixMultiplicationNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNodeThis represents a matrix multiplication.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MatrixNegateNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a negate operation on a matrix input
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MatrixPhiNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents an phi operation; it is generated when a model contains calls to Normal(0,1).cdf
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MatrixScaleNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNodeThis represents a matrix scaling.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MatrixSumNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ModNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.MultiplicationNode(inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNodeThis represents multiplication of values.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.NaturalNode(value: int)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantNodeAn integer constant restricted to non-negative values
- value: int
- class beanmachine.ppl.compiler.bmg_nodes.NegateNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a unary minus.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.NegativeRealNode(value: float)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantNodeA real constant restricted to non-positive values
- value: float
- class beanmachine.ppl.compiler.bmg_nodes.NormalNode(mu: beanmachine.ppl.compiler.bmg_nodes.BMGNode, sigma: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe normal (or “Gaussian”) distribution is a bell curve with a given mean and standard deviation.
- property mu: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property sigma: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- class beanmachine.ppl.compiler.bmg_nodes.NotEqualNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ComparisonNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.NotInNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ComparisonNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.NotNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a logical not that appears in the Python model.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.Observation(observed: beanmachine.ppl.compiler.bmg_nodes.BMGNode, value: Any)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BMGNodeThis represents an observed value of a sample. For example we might have a prior that a mint produces a coin that is uniformly unfair. We could then observe a flip of the coin and if heads, that is small but not zero evidence that the coin is unfair in the heads direction. Given that observation, our belief in the true unfairness of the coin should no loger be uniform.
- property observed: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- value: Any
- class beanmachine.ppl.compiler.bmg_nodes.OperatorNode(inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
beanmachine.ppl.compiler.bmg_nodes.BMGNodeThis is the base class for all operators. The inputs are the operands of each operator.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.PhiNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a phi operation; that is, the cumulative distribution function of the standard normal.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.PoissonNode(rate: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe Poisson distribution samples are non-negative integer valued.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property rate: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- class beanmachine.ppl.compiler.bmg_nodes.PositiveRealNode(value: float)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantNodeA real constant restricted to non-negative values
- value: float
- class beanmachine.ppl.compiler.bmg_nodes.PowerNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNodeThis represents an x-to-the-y operation.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ProbabilityNode(value: float)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantNodeA real constant restricted to values from 0.0 to 1.0
- value: float
- class beanmachine.ppl.compiler.bmg_nodes.Query(operator: beanmachine.ppl.compiler.bmg_nodes.BMGNode, rvidentifier: beanmachine.ppl.model.rv_identifier.RVIdentifier)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BMGNodeA query is a marker on a node in the graph that indicates to the inference engine that the user is interested in getting a distribution of values of that node.
- property operator: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property rv_identifier: beanmachine.ppl.model.rv_identifier.RVIdentifier
- class beanmachine.ppl.compiler.bmg_nodes.RShiftNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.RealNode(value: float)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantNodeAn unrestricted real constant
- value: float
- class beanmachine.ppl.compiler.bmg_nodes.SampleNode(operand: beanmachine.ppl.compiler.bmg_nodes.DistributionNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a single unique sample from a distribution; if a graph has two sample nodes both taking input from the same distribution, each sample is logically distinct. But if a graph has two nodes that both input from the same sample node, we must treat those two uses of the sample as though they had identical values.
- property operand: beanmachine.ppl.compiler.bmg_nodes.DistributionNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.SquareRootNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.StudentTNode(df: beanmachine.ppl.compiler.bmg_nodes.BMGNode, loc: beanmachine.ppl.compiler.bmg_nodes.BMGNode, scale: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe Student T distribution is a bell curve with zero mean and a heavier tail than the normal distribution. It is useful in statistical analysis because a common situation is to have observations of a normal process but to not know the true mean. Samples from the T distribution can be used to represent the difference between an observed mean and the true mean.
- property df: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- property loc: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property scale: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- class beanmachine.ppl.compiler.bmg_nodes.SumNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.SwitchNode(inputs: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
beanmachine.ppl.compiler.bmg_nodes.BMGNodeThis class represents a point in a program where there are multiple control flows based on the value of a stochastic node.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.TensorNode(items: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode], size: torch.Size)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BMGNodeA tensor whose elements are graph nodes.
- class beanmachine.ppl.compiler.bmg_nodes.ToIntNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents an integer truncation operation; it is generated when a model contains calls to Tensor.int() or int().
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ToMatrixNode(rows: beanmachine.ppl.compiler.bmg_nodes.NaturalNode, columns: beanmachine.ppl.compiler.bmg_nodes.NaturalNode, items: List[beanmachine.ppl.compiler.bmg_nodes.BMGNode])
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNodeA 2-d tensor whose elements are graph nodes.
- property columns: beanmachine.ppl.compiler.bmg_nodes.NaturalNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- property rows: beanmachine.ppl.compiler.bmg_nodes.NaturalNode
- class beanmachine.ppl.compiler.bmg_nodes.ToNegativeRealMatrixNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ToNegativeRealNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ToPositiveRealMatrixNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ToPositiveRealNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ToProbabilityNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ToRealMatrixNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.ToRealNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.TransposeNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNodeThis represents a transpose operation; it is generated when a model contains calls to transpose or Tensor.transpose
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.UnaryOperatorNode(operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.OperatorNodeThis is the base type of unary operator nodes.
- property operand: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.UniformNode(low: beanmachine.ppl.compiler.bmg_nodes.BMGNode, high: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.DistributionNodeThe Uniform distribution is a “flat” distribution of values between 0.0 and 1.0.
- property high: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- property low: beanmachine.ppl.compiler.bmg_nodes.BMGNode
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- class beanmachine.ppl.compiler.bmg_nodes.UntypedConstantNode(value: Any)
Bases:
beanmachine.ppl.compiler.bmg_nodes.ConstantNode- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- value: Any
- class beanmachine.ppl.compiler.bmg_nodes.VectorIndexNode(left: beanmachine.ppl.compiler.bmg_nodes.BMGNode, right: beanmachine.ppl.compiler.bmg_nodes.BMGNode)
Bases:
beanmachine.ppl.compiler.bmg_nodes.BinaryOperatorNodeThis represents a stochastic index into a vector. The left operand is the vector and the right operand is the index.
- outputs: beanmachine.ppl.utils.item_counter.ItemCounter
- beanmachine.ppl.compiler.bmg_nodes.is_one(n: beanmachine.ppl.compiler.bmg_nodes.BMGNode) bool
- beanmachine.ppl.compiler.bmg_nodes.is_zero(n: beanmachine.ppl.compiler.bmg_nodes.BMGNode) bool